Diyala University /College of Engineering/Computer Engineering Department

Parallel Processing

Based on M. Morris Mano “Computer System Architecture "--Assist. Lecturer Ahmed Salah Hameed

Pipeline and Vector Processing

Based on M. Morris Mano “Computer System Architecture "--Assist. Lecturer Ahmed Salah Hameed

Parallel Processing

* Parallel processing 1s a term used to denote a large class of
techniques that are used to provide simultaneous data processing
tasks for the purpose of increasing the computational speed of a
computer system.

* concurrent data processing to achieve faster execution.

* The purpose:

1. Speed up the computer processing capability
2. Increase the throughput

Throughput the amount of processing that can be accomplished
during a given interval of time.

* The side effects
1. The amount of hardware increases

2. The cost of the system increases

Based on M. Morris Mano “Computer System Architecture "--Assist. Lecturer Ahmed Salah Hameed

Parallel processing / levels of complexity

* At the lower level

Serial Shift register VS parallel
load registers

* At the higher level

Multiplicity of functional units
that performer identical or
different operations
simultaneously.

Based on M. Morris Mano “Computer System Architecture "--Assist. Lecturer Ahmed Salah Hameed

Figure 9-1

Processor with multiple functional unis.

P
-~

Y

To memory -~

Y

Processor
registers

Y

Y

Adder-subdractor fp———
Integer multiply f——=
Logic unit -
Shift unit *
Incrementer it
Floating=point
add-subtract
Floating—point
multiply '
Floating-point .
divide

Parallel processing or parallel computers

* It can be considered

1. from the internal organization of the processors

2. from the interconnection structure between processors
3

or from the flow of information through the system.

Flynn's classification

» Instruction Stream
+ Sequence of Instructions read from memory

» Data Stream
« Operations performed on the data in the processor

Number of Data Streams
Single Multiple
Number of | Single SISD SIMD
Instruction
Streams Multiple MISD MIMD

Based on M. Morris Mano “Computer System Architecture "--Assist. Lecturer Ahmed Salah Hameed

Flynn's classification

B

. SISD

2 CU IS b{ PU -ITI- MM

Shared m em m oy

2. SIMD

I Pl b EE— MM

L o PUs 2t | MM
cu | B ® ®
F Y

® ®
® &

4% PUa L ‘ MMa ‘

B

Based on M. Morris Mano “Computer System Architecture "--Assist. Lecturer Ahmed Salah Hameed

Flynn's classification

Cos

3. MISD O

Shared @ em oxy

MM L] » | | MM = MM

_E: h,iﬁ
'

Cu.

Sl

o

Shamd mem oy

4 MIMD — B1 o eme FEE P | o | —m—
Bz Br .
s Cl= Pl= o R E
& L &
. . *
» . »
E. E
—fi (M 1] k= Pl 5 MM

Based on M. Morris Mano “Computer System Architecture "--Assist. Lecturer Ahmed Salah Hameed

Main topics of the Chapter

* Pipeline processing : Sec. 9-2
1) Arithmetic pipeline: Sec. 9-3

2) Instruction pipeline : Sec. 9-4
* Vector processing : adder/multiplier pipeline, Sec. 9-6
* Array processing : array processor, Sec. 9-7

1) Attachedarray processor: Fig. 9-14
2) SIMD array processor: Fig. 9-15

Based on M. Morris Mano “Computer System Architecture "--Assist. Lecturer Ahmed Salah Hameed

Pipelining

* Pipelining is a technique of decomposing a sequential process
into sub operations, with each sub process being executed in a
special dedicated segment that operates concurrently with all
other segments.

* A pipeline can be visualized as a collection of processing
segments through which binary information tlows.

* The name “pipeline” implies a flow of information analogous
to an industrial assembly line.

Based on M. Morris Mano “Computer System Architecture "--Assist. Lecturer Ahmed Salah Hameed

Example of the Pipeline Organization

R1<—A;, R2<«B; Input A; and B;
Ai*B; + C forr = 1, 2.3, convt R3«R1*R2, R4+« C(; Multiply and input C;
R5«R3 + R4 Add C; to product
T
Segment 1
- A
A
Segment 2
Segment 3

Based on M. Morris Mano “Computer System Architecture "--Assist. Lecturer Ahmed Salah Hameed

Example of the Pipeline Organization

TABLE 9-1 Content of Registers in Pipeline Example
Clock Segment 1 Segment 2 Segment 3
Pulse

Number R1 R2 R3 R4 RS
1 A, B, — — —

2 A- Bz A] * Bl Cl —

3 A; B, A, * B> C; A *B, + C,

4 As B, A;* B, C; A,* B, + Cz

) A; B5 A4*B4 C4 Ag*Bg + C3
6 As Bs As* Bs Cs Asx By + G,

7 A B, Aﬁ ¥ .B.ﬁ Cﬁ As* Bs + C5

8 s— — A.* By C7 Ag* Bg + Cs

9 — w— a— — A',r* BT + C7

Based on M. Morris Mano “Computer System Architecture "--Assist. Lecturer Ahmed Salah Hameed

GENERAL PIPELINE

Any operation that can be decomposed into a sequence of sub

operations of about the same complexity can be implemented by
a pipeline processor.

The technique is efficient for those applications that need to
repeat the same task many times with different sets of a task as

the total operation performed going through all the segments in
the pipeline.

Clock

Input

Figure 9-3 Four-segment pipeline.

Based on M. Morris Mano “Computer System Architecture "--Assist. Lecturer Ahmed Salah Hameed

SPEED CALCULATION

K-segment pipeline with a clock cycle time (tp) is used to execute n tasks.

The first task T1 requires a time equal to (k*tp) to complete its operation
because we have k segments in the pipe.

The remaining n - 1 tasks emerge from the pipe at the rate of one task per
clock cycle and they will be completed after a time equal to (n - 1)*tp.

Therefore, to complete n tasks using a k-segment pipeline:

K+ (n-1)clock cycles

For_example system with four segments and six tasks.

The time required to complete all the operations is/
4 +(6-1)=9clock cycles

Based on M. Morris Mano “Computer System Architecture "--Assist. Lecturer Ahmed Salah Hameed

SPEED CALCULATION

Segment:

1

Figure 9-4 Space-time diagram for pipeline.

1 2 3 4 5 6 7 B 9
Ty T T3 T, Ts Te
T, Ty Ty T4 Ts Tg
T, T, T3 Ty Ts | Ts
T, T T Ty Ts

» Clock cycles

Based on M. Morris Mano “Computer System Architecture "--Assist. Lecturer Ahmed Salah Hameed

SPEED CALCULATION

NONPIPELINE UNIT
Each task take time equal to tn.

The total time required for n tasks is

wls

n~-n

PIPELINE UNIT
To complete n tasks using a k-segment pipeline:
K+ (n-1) clock cycles

Total time 1is: K+(n-1)*tp

_ nt.
(k + n -1,

SPEED UP)

Based on M. Morris Mano “Computer System Architecture "--Assist. Lecturer Ahmed Salah Hameed

SPEED CALCULATION
NOTES

* As the number of tasks increases, n becomes much larger than k - 1, and
k + n - 1 approaches the value of n. Under this condition, the speedup
becomes:

5=z

P

* If we assume that the time it takes to process a task is the same in the
pipeline and nonpipeline circuits, we will have tn = k*tp. So the speedup
reduces to:

kt,
tP

S=-L=k

Based on M. Morris Mano “Computer System Architecture "--Assist. Lecturer Ahmed Salah Hameed

EXAMPLE ON SPEED CALCULATION

Example
- 4-stage pipeline
- subopertion in each stage; t, =20nS
- 100 tasks to be executed
- 1 task in non-pipelined system; 20*4 = 80nS

Pipelined System
(k +n-1)"t, = (4 +99)*20 =2060nS

Non-Pipelined System
th= n*k*tp =100 * 80 = 8000nS

Speedup
S, =8000/2060 = 3.88

4-Stage Pipeline is basically identical to the system with 4
identical function units

Based on M. Morris Mano “Computer System Architecture "--Assist. Lecturer Ahmed Salah Hameed

ARITHMETIC PIPELINE

* Pipeline arithmetic units are usually found in very high speed computers.
They are used to implement floating-point operations, multiplication of
fixed-point numbers, and similar computations encountered in scientific
problems.

EXAPLE:

FLOATING POINT ADDER

Based on M. Morris Mano “Computer System Architecture "--Assist. Lecturer Ahmed Salah Hameed

ARITHMETIC PIPELINE

Floating-point adder Exponents Mantissas

X=Ax2°
Y=Bx2v

[1] Compare the exponents , Compare
[2] Align the mantissa Segment 1: | exponents
[3] Add/sub the mantissa

[4] Normalize the resuit

i
Segment 2: ign mantissa

Segment 3:

Segment 4; J Nna:';ze

Based on M. Morris Mano “Computer System Architecture "--Assist. Lecturer Ahmed Salah Hameed

ARITHMETIC PIPELINE

X = 0.9504 x 10°

Y = 0.8200 x 107
1. Compare the exponents. X = 0.9504 x 10°
2. Align the mantissas. Y = 0.0820 x 10°

3. Add or subtract the mantissas.
4, Normalize the result.

Z =1.0324 x 10°

Z = 0.10324 x 10¢

Based on M. Morris Mano “Computer System Architecture "--Assist. Lecturer Ahmed Salah Hameed

ARITHMETIC PIPELINE EXAMPLE

N = W o = e

Suppose that the time delays of the four segments are as following:

tl =60 ns

t2="70ns

t3 =100 ns

t4= 80 ns

the interface registers have a delay of tr = 10 ns.

Pipeline
The clock cycle 1s chosen to be:
ip=13+tr= 110ns.

Non Pipeline
Delay time tn=t1 +t2 + t3 + t4 + tr = 320 ns.

Speed up

the pipelined adder has a speedup of 320/110 = 2.9 over the non pipelined
adder.

Based on M. Morris Mano “Computer System Architecture "--Assist. Lecturer Ahmed Salah Hameed

INSTRUCTION PIPELINE

An instruction pipeline reads consecutive instructions from memory while
previous instructions are being executed in other segments. This causes the

instruction fetch and execute phases to overlap and perform simultaneous
operations.

Simple Example:

Consider a computer with an instruction fetch unit and an instruction
execution unit designed to provide a two-segment pipeline.

1 2 3 4 1 2 3 4 5 6
F E F E
F E F E
F E F E
2-segment pipelined Non pipelined

Based on M. Morris Mano “Computer System Architecture "--Assist. Lecturer Ahmed Salah Hameed

INSTRUCTION PIPELINE

* NOTE 1: Computers with complex |1. Fetch the instruction from memory.
instructions require other phases in|2. Decode the instruction.
addition to the fetch and execute to|3. Calculate the effective address.
process an mstruction completely. 4. Fetch the operands from memory.

5. Execute the instruction.

6. Store the result in the proper place.

* NOTE 2: Dithculties that will prevent the instruction pipeline from
operating at its maximum rate.

1. Different segments may take different times to operate on the incoming
information.

2. Some segments are skipped for certain operations. For example, a register
mode instruction does not need an effective address calculation.

3. Two or more segments may require memory access at the same time,
causing one segment to wait until anotheris finished with the memory.

Based on M. Morris Mano “Computer System Architecture "--Assist. Lecturer Ahmed Salah Hameed

INSTRUCTION PIPELINE

* NOTE 3: Memory access conflicts are sometimes resolved by using
two memory buses for accessing instructions and data in separate
modules. In this way, an instruction word and a data word can be read
simultaneously from two different modules.

* NOTE 4: The design of an instruction pipeline will be most efficient if
the instruction cycle i1s divided into segments of equal duration. The
time that each step takes to fulfill its function depends on the
instruction and the way it is executed.

Based on M. Morris Mano “Computer System Architecture "--Assist. Lecturer Ahmed Salah Hameed

EXAMPLE: FOUR-SEGMENT INSTRUCTIONPIPELINE

¥ 5
S 4- | Fetch instruction 1. FI is the segment that fetches an instruction.
egmenti: from memory ; ; ,
. 2. DA is the segment that decodes the instruction
Decode instruction and calculates the effective address.
Segment2: | anc caleuate 3. FO is the segment that fetches the operand.
4. EX is the segment that executes the instruction.
yes Branch?
no
- Fetch operand
Segment3: from memory
Segmentd4: | Execute instruction Siep: 1 lalsl4|sle|r]|s]o|lw|nnjiz]s
Instruction: 1| A (DA FO | EX
Interrupt| yes - al Lot Rt L
handling (Branch) 3 F1 | DA | FO | EX
v no 4 A|l-|-|nA|ba|Fo|EX
Update PC 5 -|=-|-|m|pa|ro|EX
* 6 Fl |DA | FO | EX
Empty pipe 7 Fl | DA | PO | EX

Figure 9-8 Timing of inscruction pipeline.

Based on M. Morris Mano “Computer System Architecture "--Assist. Lecturer Ahmed Salah Hameed

CONFLICTS OF INSTRUCTION PIPELINE

In general, there are three major difficulties that cause the instruction
pipeline to deviate from its normal operation.

1. Resource conflicts caused by access to memory by two segments at the

same time. Most of these conflicts can be resolved by using separate
instruction and data memories.

2. Data dependency conflicts arise when an instruction depends on the
result of a previous instruction, but this result is not yet available.

3. Branch difficulties arise from branch and other instructions that change
the value of PC.

Based on M. Morris Mano “Computer System Architecture "--Assist. Lecturer Ahmed Salah Hameed

DATA DEPENDENCY

Occurs when the execution of an instruction
depends on the results of a previous instruction

ADD R1,R2,R3
SUB R4,R1,R5

Data hazard can be dealt with either hardware
techniques or software technique

Hardware Technique

Interlock

- hardware detects the data dependencies and delays the scheduling

of the dependent instruction by stalling enough clock cycles
Forwarding (bypassing, short-circuiting)

- Accomplished by a data path that routes a value from a source
(usually an ALU) to a user, bypassing a designated register. This
allows the value to be produced to be used at an earlier stage in the
pipeline than would otherwise be possible

Software Technique
Instruction Scheduling(compiler) for delayed load

Based on M. Morris Mano “Computer System Architecture "--Assist. Lecturer Ahmed Salah Hameed

OPERAND FORWARDING

Example:

Register
ADD R1,R2,R3 i
SUB R4,R1,R5
-z i i
3-stage Pipeline MUX MUX Bypass

path

I: Instruction Fetch Re_?(ultt}
A: Decode, Read Registers, o i o w
ALU Operations

E: Write the result to the

destination register R4 I_ |
ALU result buffer

ADD 1 1A | E
SUB ! A | E Without Bypassing
SUB i JA | E With Bypassing

Based on M. Morris Mano “Computer System Architecture "--Assist. Lecturer Ahmed Salah Hameed

DELAYED LOAD

a=b+c:
d=e-f;
Unscheduled code: Scheduled Code:
LW Rb, b LW Rb, b
LW Rec, c LW Rc, ¢
— ADD Ra, Rb, Rc LW Re, e
— SW a, Ra ADD Ra, Rb, Rc
LW Re, e LW Rf, f
LW Rf, f SW a, Ra
— SUB Rd, Re, Rf SUB Rd, Re, Rf
— SW d, Rd — SW d, Rd

Delayed Load

A load requiring that the following instruction not use its result

Based on M. Morris Mano “Computer System Architecture "--Assist. Lecturer Ahmed Salah Hameed

DELAYED LOAD

Clock cycles: 11213 |4]|5]|6
l. Load R1 1|A|E

2. Load R2 Il |A]E

3. AddR] + R2 I |A|E

4. Store R3 1 [A]|E

1. LOAD: R1<«M/[address 1]
2. LOAD: R2<MJ[address 2]
3
4

(a) Pipeline timing with data conflict

. ADD: R3«<R1 + R2

. STORE: M|[address 3]« R3 Clock cycle: l 3lalslel7
I. Load R1I 1AL E
2. Load R2 I | A
3. No-operation I1 | A|E
4. Add R] + R2 1| A
5. Store R3 11AI|E

(b) Pipeline timing with delayed load

Figure 9-9 Three-segment pipeline timing.

Based on M. Morris Mano “Computer System Architecture "--Assist. Lecturer Ahmed Salah Hameed

‘ HANDLING OF BRANCH INSTRUCTIONS \

Branch Instructions

- Branch target address is not known until
the branch instruction is completed

Branch
Instruction Fl | DA] FO | EX

Next - | I
Instruction DA FO—] EX

Target address available

- Stall -> waste of cycle times

Dealing with Control Hazards

* Prefetch Target Instruction
* Branch Target Buffer

* Loop Buffer

* Branch Prediction

* Delayed Branch

Based on M. Morris Mano “Computer System Architecture "--Assist. Lecturer Ahmed Salah Hameed

HANDLING OF BRANCH INSTRUCTIONS

el

Prefetch the target instruction
Instruction in addition to the instruction following the branch. Both are saved until
the branch is executed.
The control chooses the instruction stream of the correct program flow and discard
the other one.

Branch Target Buffer or BTB

The BTB 1s an associative memory included in the fetch segment of the pipeline.
Entry: Store the address of a previously executed branch instruction, the target

instruction for that branch, and the next few instructions after the branch target
instruction.

When fetching and decoding instruction, 1t searches the BTB for the address of the
mnstruction:

If 1t 1s in the BTB, fetch it from the BTB.

[f the mnstruction 1s not in the BTB, fetch it from memory and update the BTB.

The advantage of this scheme 1s that branch instructions that have occurred
previously are readily available in the pipeline without interruption.

Based on M. Morris Mano “Computer System Architecture "--Assist. Lecturer Ahmed Salah Hameed

HANDLING OF BRANCH INSTRUCTIONS

The loop buffer

This 1s a small very high speed register file mamtained by the instruction fetch
segment of the pipeline.

The program loop can be executed directly without having to access memory until
the loop mode 1s removed by the final branching out.

Branch prediction
A pipeline with branch prediction uses some additional logic to guess the outcome
of a conditional branch instruction before it 1s executed.
The pipeline then begins prefetching the instruction stream from the predicted

path.
A correct prediction eliminates the wasted time caused by branch penalties.

Delayed branch
The compiler detects the branch instructions and rearranges the machine language
code sequence by inserting useful instructions that keep the pipeline operating
without interruptions.
An example of delayed branch is the insertion of a no-operation instruction after a
branch instruction.

Based on M. Morris Mano “Computer System Architecture "--Assist. Lecturer Ahmed Salah Hameed

EXAMPLE OF DELAYED BRANCH

Load from memory to R1
Increment R2

Add R3 to R4

Subtract R5 from R6
Branch to address X

Based on M. Morris Mano “Computer System Architecture "--Assist. Lecturer Ahmed Salah Hameed

EXAMPLE OF DELAYED BRANCH

Clock cycles: 1 314|5(6]7)|8]9]10

I. Load I . Al|E '

2. Increment . I | A . E 1

3. Add . I - |

4, Subtract 1| A|E i

5. Branch to X I|A|E

6. No-operation I | A| E

7. No-operation . I |A|E | |

8. Instruction in X I [|A]|E
(a) Using no-operation instructions

Based on M. Morris Mano “Computer System Architecture "--Assist. Lecturer Ahmed Salah Hameed

EXAMPLE OF DELAYED BRANCH

Clock cycles: I 314|567 8

l. Load I |A | E

2. Increment I |A|E }.

3.Branchto X I -| Al E

4. Add I | A q E

5. Subtract] I ' A ‘ E

6. Instruction in X I|A|E
(b) Rearranging the instructions

Based on M. Morris Mano “Computer System Architecture "--Assist. Lecturer Ahmed Salah Hameed

PROBLEMS

9-1.

In certain scientific computations it is necessary to perform the arithmetic
operation (A; + B;)(Ci + D;) with a stream of numbers. Specify a pipeline
configuration to carry out this task. List the contents of all registers in the
pipeline for i = 1 through 6.

Ij f i fr‘ i}f

R1 R2 R3 R4

¢ ¥ Y v

ADDER ADDER
		1
Rs		R6
-	Multiplier	

Y
R7

Based on M. Morris Mano “Computer System Architecture "--Assist. Lecturer Ahmed Salah Hameed

PROBLEMS

9-2. Draw a space-time diagram for a six-segment pipeline showing the time it
takes to process eight tasks.

Segment | 1 2 3 4 5 6 T 8 9 19711 | 12 13
1 Th | T2 | 13| Ta | T | Tg | T3 | Ta

2 T | T | T3 | Ta | Te | Te | T7 | Tg

3 Ty | Ia | I3 | 1a | Mg | Tg | T3 | lg

4 T: [Tl T [Tx | Te | Tg | T35 | Tq

) ¥ | Iz | Is | Lg| ¥5 | Yg | 17 | la

6 T | To | T3 | T4 | Ts | Tg | Ty Ts
(k+n-=1)t,=6+8-1=13 cycles T

Based on M. Morris Mano “Computer System Architecture "--Assist. Lecturer Ahmed Salah Hameed

PROBLEMS

Determine the number of clock cycles that it takes to process 200 tasks in a
six-segment pipeline.

k = 6 segments
n=200tasks (k+n-=1)=6+ 200 -1 = 205 cycles

Based on M. Morris Mano “Computer System Architecture "--Assist. Lecturer Ahmed Salah Hameed

PROBLEMS

A nonpipeline system takes 50 ns to process a task. The same task can be
processed in a six-segment pipeline with a clock cycle of 10 ns. Determine

the speedup ratio of the pipeline for 100 tasks. What is the maximum
speedup that can be achieved?

t, =50 ns
k=6
t,=10ns
n=100
- nt, _ 100x30 _
(k+11~rl)tp (6-99) x 10
S — tr‘ — 50 = &
ol 10

Based on M. Morris Mano “Computer System Architecture "--Assist. Lecturer Ahmed Salah Hameed

PROBLEMS

9-5. The pipeline of Fig. 9-2 has the following propagation times: 40 ns for the
operands to be read from memory into registers R1 and R2, 45 ns for the

signal to propagate through the multiplier, 5 ns for the transfer into R3, and
15 ns to add the two numbers into R5.

a. What is the minimum clock cycle time that can be used?

b. A nonpipeline system can perform the same operation by removing R3
and R4. How long will it take to multiply and add the operands without
using the pipeline?

c. Calculate the speedup of the pipeline for 10 tasks and again for 100 tasks.

d. What is the maximum speedup that can be achieved?

(@)t,=45+5=50ns k=3
(b)t,=40+45+ 15=100 ns
(©) S B o JOCHD forn =10
{I-:+11-1}1P (3+9)50
- 10{}:{10-0 =196 forn=100
(3+99)50
(@) .
L, 50

Based on M. Morris Mano “Computer System Architecture "--Assist. Lecturer Ahmed Salah Hameed

PROBLEMS

9-6. It is necessary to design a pipeline for a fixed-point multiplier that multiplies

two 8-bit binary integers. Each segment consists of a number of AND gates

and a binary adder similar to an array multiplier as shown in Fig. 10-10.

a. How many AND gates are there in each segment, and what size of adder
is needed?

b. How many segments are there in the pipeline?

c. If the propagation delay in each segment is 30 ns, what is the average time
that it takes to multiply two fixed-point numbers in the pipeline?

(b) There are 7 segments in the pipeline
k+n -1 e (n+6) 30
Il : n

Forn=10 tay 48 ns

Forn=100 tay =31.8ns
Forn -« taw =30ns

(¢) Average time =

Based on M. Morris Mano “Computer System Architecture "--Assist. Lecturer Ahmed Salah Hameed

PROBLEMS

9-7. The time delay of the four segments in the pipeline of Fig. 9-6 are as follows:
ty = 50ns, t; = 30ns, t3 = 95 ns, and ¢, = 45 ns. The interface registers delay
time t, = 5 ns.

a. How long would it take to add 100 pairs of numbers in the pipeline?

b. How can we reduce the total time to about one-half of the time calculated
in part (a)?

(a) Clock cycle = 95 + 5 = 100 ns (time for segment 3)
Forn=100,k=4,t, =100 ns.
Time to add 100 numbers =(k+n-1) t,=(4 + 99) 100
= 10,300 ns = 10.3 ps
(b) Divide segment 3 into two segments of 50 + 5 =55
and45+5=50ns. Thismakestp=55ns; k=5
(k+n=1)tp=(5+99)55=5,720ns =5.72 us

Based on M. Morris Mano “Computer System Architecture "--Assist. Lecturer Ahmed Salah Hameed

PROBLEMS

9-8.

How would you use the floating-point pipeline adder of Fig. 9-6 to add 100
floating-point numbers X; + X; + X5 + -+ + X;00?

Exponents Mantissas

Compare

Segment 1 exponents

segment 2: LChoose exponen] lign mantissa

Segment 3:

Segment 4:

Based on M. Morris Mano “Computer System Architecture "--Assist. Lecturer Ahmed Salah Hameed

PROBLEMS

9-9. Formulate a six-segment instruction pipeline for a computer. Specify the
operations to be performed in each segment.

Fetch the instruction from memory.
Decode the instruction.

Calculate the effective address.
Fetch the operands from memory.
Execute the instruction.

ol L ol o

Store the result in the proper place.

9-10. Explain four possible hardware schemes that can be used in an instruction
pipeline in order to minimize the performance degradation caused by in-
struction branching.

Based on M. Morris Mano “Computer System Architecture "--Assist. Lecturer Ahmed Salah Hameed

PROBLEMS

9-11. Consider the four instructions in the following program. Suppose that the
first instruction starts from step 1 in the pipeline used in Fig. 9-8. Specify
what operations are performed in the four segments during step 4.

Load Rl M[3172]
ADD R2«—R2 + M[313]
INC Ri<—R3+ 1
STORE M[314]<«R3

1 2 3 4™ step

1. Load R1«+ M [312] Fl DA FO | EX
2. Add R2 « R2 + M [313] Fl Fl DA | FO
3. Increment R3 Fl DA
4. Store M[314] « R3 Fl

Segment EX: transfer memory word to R1.

Segment FO: Read M[313].

Segment DA: Decode (increment) instruction.
Segment Fl: Fetch (the store) instruction from memory.

Based on M. Morris Mano “Computer System Architecture "--Assist. Lecturer Ahmed Salah Hameed

PROBLEMS

9-12. Give an example of a program that will cause data conflict in the three-seg-
ment pipeline of Sec. 9-5.
Load: R1<Memory 1 2 3 -
Increment: R1T « R1 + 1 I A =
I A E
R1 is loaded in E .
It's too early to increment itin A

9-13.

Give an example that uses delayed load with the three-segment pipeline of
Sec. 9-5.

Insert a No-op instruction between the two instructions in the example of
Problem 9-12 (above).

Based on M. Morris Mano “Computer System Architecture "--Assist. Lecturer Ahmed Salah Hameed

PROBLEMS

9-14. Give an example of a program that will cause a branch penalty in the
three-segment pipeline of Sec. 9-5.

1 P 3 4 5 6 7
101 Add R2to R3 I A E
102 Branch to 104 I A E l
103 Increment R1 - -
104 Store R1 I A E

9-15. Give an example that uses delayed branch with the three-segment pipeline

of Sec. 9-5.
Use example of Problem 9-14. 1 2 3 4 5 6
101 Branchto 105 I A E |
102 Add R2to R3 | A E
103 No-operation I A =
104 Increment R1 l
105 Store R1 I A E

Based on M. Morris Mano “Computer System Architecture "--Assist. Lecturer Ahmed Salah Hameed

